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1 Introduction 
 
3D Continuous Level of Detail (CLOD) systems for massive datasets often 
sacrifice the raw data format and accuracy for speed, removing undesirable 
features in the source data, or to eliminate inherent differences in resolution. We 
present a novel approach which does not have any of these limitations and is 
focused on displaying the source data from the National Geospatial Intelligence 
Agency (NGA) Digital Terrain Elevation Data (DTED) [1] without modification. 
The implementation ensures accurate and timely presentation of the terrain data 
that is critical in a Command and Control environment and addresses the in-
house research objective to develop novel information visualization concepts. 
 
This implementation addresses the need to display high resolution terrain data 
(e.g. DTED) from global to high-resolution scales.  This type of task has seen 
proliferation among modern computers due to the free distribution of applications 
like Google Earth©.  This approach addresses specifically the methodology for 
loading and managing gridded datasets of the ilk available from the NGA and the 
US Geological Survey (USGS).  Since even the best modern hardware cannot 
use brute force methods for loading or displaying such voluminous data at the 
global level, the only way to achieve the visual quality and the interactive speed 
desired is to use real-time algorithms that vary the quality of the displayed 
content.   
 
The ability to view terrains with such a large number of vertices is an important 
research area, where several in-core and out-of-core techniques have been 
developed.  However, these techniques require an expensive pre-processing 
stage which decimates, or re-grids the data, changing the statistical accuracy of 
the original incoming data.  This problem is still open and challenging as the 
amount and resolution of data is growing faster than that of our ability to visualize 
such data. 
 
This report describes the implementation to load and manage large terrain 
datasets. This includes a data structure for storing, manipulating, and processing 
of vertex information, and an algorithm that intelligently processes the information 
contained within the data structure. 
 
 

2 Approach 
 
The approach provides a data structure and algorithm for loading and/or 
displaying gridded datasets by adaptively loading data from an external datastore 
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and providing this information to a modern graphic processing unit in an 
acceptable form.  In particular, this approach uses independent view refinement 
criteria for determining the usefulness of a particular vertex of the gridded data, 
retrieves that data from some backing store and inserts that data into the Circular 
Linked List of Geometrical Relationship (CLLGR) data structure.  When all 
necessary refinements have been completed, it dispatches the vertex information 
as a list of triangle fans for visualization.  These refinements can be adaptive, 
such that more data may be fetched to satisfy the view refinement criteria, but a 
redraw can occur due to the desire to provide the user with a more responsive 
system.  The data may be procedurally generated as is the case for fractally 
generated terrain or displaying of the World Geodetic 1984 (WGS84) reference 
ellipsoid, or can be read from memory if the desired data has already been 
provided to a cache, or can be loaded from some other persistent storage device 
like a modern hard disk drive, or can be fetched from some web service or other 
network capable infrastructure. 
 

2.1 Data Structure 
 
The algorithm is implemented using two different data structures; a forest of 
Quadtrees comprised of TreeNodes and a shared pool of elevation data called 
IndexNodes.  Each TreeNode is a collection of linked IndexNodes that encode 
some spatial relationship, and potentially children TreeNodes.  Each IndexNode 
maintains unique mappings to other IndexNodes and has a vertex for its 
Cartesian based information.  The algorithm relies on a forest consisting of 282 
TreeNodes, and 1500 IndexNodes.  The top level TreeNodes form the coarsest 
representation of the Earth.  Refinement is currently based on approximated 
projected screen area of the TreeNode; however, other previously published 
techniques for refinement can be easily integrated [2].   
 
The number of initial TreeNodes is derived from segmenting the globe into latitu-
dinal bands where each TreeNode in a band covers the same area as its 
neighbor.  The bands are: 90°N to 82°N, 82°N to 80°N, 80°N to 75°N, 75°N to 
70°N, 70°N to 50°N, 50°N to 30°N, 30°N to 0°N.  This is repeated symmetrically 
in the southern hemisphere.  Each band is made up of a different number of 
TreeNodes, but always a number that evenly divides the DTED elevation 
information.  This prevents any top level TreeNode from cutting through the 
changes in data resolution of the underlying six DTED bands:  82°S to 75°S, 
75°S to 50°S, 50°S to 0°N, 0°N to 50°N, 50°N to 75°N, and 75°N to 82°N. 
 
Each TreeNode is comprised of nine IndexNodes that map directly to elevation 
posts found in the source data. IndexNodes store the native elevation data found 
in the DTED files along with four links to their adjacent neighboring IndexNodes 
which are unaware of the TreeNode topology.  A critical component of this 
algorithm is that TreeNodes share IndexNodes. The IndexNodes on the right 

2



 
 

edge of the “orange” triangle fan are the same as the IndexNodes on the left 
edge of the “blue” triangle fan (Figure 1). 
 
During refinement of a TreeNode, the new data point is inserted by loading the 
new elevation from the source data then walking the appropriate edge to find its 
insertion point. If an IndexNode already exists with the same latitude and 
longitude, the new node is discarded. A distinct advantage is that a single 
TreeNode never needs access to its neighbor and that insertions can happen in 
non-uniform placements. This makes stitching between various resolutions 
possible. 

 

For this example, and our current embodiment, it resembles a traditional 
Quadtree structure.  Where each IndexNode has a “top”, “bottom”, “left”, and 
“right” pointer to another IndexNode, and each tree node consists of a center 
IndexNode (denoted as V0) and eight immediate neighbors, see Figure 2.  Each 
TreeNode has zero or four children. 

 

Figure 1  Wireframe depiction of stitched bands 

Figure 2  TreeNode structure 
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2.2 Algorithm 
 
Our patent pending algorithm implements a particular view refinement process 
and has an out-of-core mechanism for the loading of NGA’s DTED [3].  The 
algorithm uses a screen projected node width approximation for ascertaining 
whether refinements, or simplifications, of the CLLGR are required.  The loaded 
information is also then projected into a user specified coordinate system that 
converts the source latitude and longitude tuples into geocentric vertex 
information.  The three available projections at this time are a flat earth 
projection, a WGS84 projection, or a Lambert Conformal projection; however 
there is no limitation to the types of projections that are possible. 
 
A significant advantage to the algorithm is it eliminates the need for conversions 
from the native formats allowing it to respond quickly to new data, preserve 
source data statistical accuracy, and allow for a controlled lighting environment. 
By stitching between various resolutions of data instead of drawing shelves 
between resolutions as is the case with NASA World Wind [4], Chunked LOD [5], 
and JCanyon [6], our algorithm can calculate normals and use OpenGL based 
lighting instead of only relying on pre-lit imagery. This is critical when displaying 
non-photographic imagery, road maps, or the raw terrain data since lighting 
provides the only visual cue of terrain undulations (Figure 3).  
 

 

 

Figure 3  Non-textured OpenGL lit DTED 
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The procedure to define and process the data structure in preparation for 
rendering is as follows: 
 
1. Create one or more top level TreeNodes -  If more than one TreeNode is 
created then link neighboring TreeNodes where desired.  For example, a cylinder 
could have two top level Tree Nodes, where traversing an IndexNodes right links 
would create a cycle (Figure 4).  In this example the TreeNodes share edges of 
the finished geometry by sharing the IndexNodes labeled A, D, G, C, F, and I.  
This creates the lowest quality version for this case.  Each TreeNode directly 
accesses nine IndexNodes, but due to the sharing of some indexNodes, there 
are only twelve unique IndexNodes. 

 

 
Before displaying a particular level of refinement, a view refinement step can be 
taken.  This step essentially determines whether the current representation as 
stored by the tree of TreeNodes and IndexNodes satisfies the criteria.  For this 
case, assume one TreeNode failed the check and needed refinement.   
 

2. Test each TreeNode based on the defined quality measurement - If the 
current representation is less than the desired goal, the node is refined. Refer to 
the description for the refinement process below (Figure 5). Step 1 is to create 
four TreeNode children.  Step 2 is to create up to sixteen new IndexNodes.  If an 
IndexNode already exists that satisfies the geometric relationship, then the 
previously created IndexNode must be shared by these new IndexNodes.  This is 

Figure 4  Top Level Example – Two Top Level TreeNodes Share IndexNodes 
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identical to the requirements for the TreeNodes as specified in Figure 4.  In this 
example the assumption is that no previously created IndexNodes satisfy the 
geometric relationship so sixteen new IndexNodes are created.  Step 3 is to 
assign the newly created IndexNodes to their respective TreeNodes.  Notice that 
the sharing of IndexNodes is pervasive through this algorithm and is the basis for 
it’s efficiency and effectiveness.  Step 4 is to assign the four newly created 
TreeNodes to the TreeNode that failed the view criteria.  Step 5 is to then link in 
the new IndexNodes.   

 

 

 
 

 
  

Figure 5a  Refinement Process – Initial State through Step 2 
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After these connections are created the ability to create a cycle by walk around 
the IndexNodes is preserved.  This creates the depiction in Figure 6. 
 

Figure 5b  Refinement Process – Step 3 through Step 5 
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If the current representation exceeds the desired goal, the node is decimated. 
Refer to the description for the decimation process below (Figure 7). 

 

 

 

 

 

 

 

 

 

 

Figure 6  Data structure after one refinement process iteration 

Figure 7a  Decimation Process – Initial State 
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3. Generate triangle fans from the TreeNodes for rendering - Referring to 
Figure 8, after all necessary refinements are made, the display process of 
creating the triangle fans to be sent to the graphics card begins.  The process is 
applied at all TreeNodes that do not have children.  For each TreeNode, 
transform the data in the IndexNode into the desired coordinate system and add 
it to a list of vertices, referred to as the vertex list, for the triangle fan.  Follow that 
IndexNode’s top link.  Transform that new IndexNode’s data into the desired 
coordinate system and add it to the vertex list.  Follow that IndexNode’s left link.  

Figure 7b  Decimation Process – Step 1 through Step 3 

d

h

a

ec

A B

ED

k lj

o HG

b C

f g

i F

m n

p I

IndexNode linksTreeNode links TreeNode Data Structures

Node1

v0 = E
v1 = B
v2 = A
v3 = D
v4 = G
v5 = H 
v6 = I
v7 = F
v8 = C
NW = Node2
NE = Node3
SW = Node4
SE = Node5

Node2

v0 = d
v1 = a
v2 = A
v3 = c
v4 = D
v5 = h 
v6 = E
v7 = e
v8 = B
NW = null
NE = null
SW = null
SE = null

Node3

v0 = f
v1 = b
v2 = B
v3 = e
v4 = E
v5 = i 
v6 = F
v7 = g
v8 = C
NW = null
NE = null
SW = null
SE = null

Node4

v0 = k
v1 = h
v2 = D
v3 = j
v4 = G
v5 = o 
v6 = H
v7 = l
v8 = E
NW = null
NE = null
SW = null
SE = null

Node5

v0 = m
v1 = i
v2 = E
v3 = l
v4 = H
v5 = p 
v6 = I
v7 = n
v8 = F
NW = null
NE = null
SW = null
SE = null

QuadTree

Step 2) Disconnect Children Tree Nodes

Node 1

Node 2 Node 3

Node 4 Node 5

Node 1

A B

ED

HG

C

F

I

IndexNode linksTreeNode links TreeNode Data Structures

Node1

v0 = E
v1 = B
v2 = A
v3 = D
v4 = G
v5 = H 
v6 = I
v7 = F
v8 = C
NW = Node2
NE = Node3
SW = Node4
SE = Node5

QuadTree

Node 1Node 1

Step 3) Remove children TreeNodes

d

h

a

ec

A B

ED

k lj

o HG

b C

f g

i F

m n

p I

IndexNode linksTreeNode links TreeNode Data Structures

Node1

v0 = E
v1 = B
v2 = A
v3 = D
v4 = G
v5 = H 
v6 = I
v7 = F
v8 = C
NW = Node2
NE = Node3
SW = Node4
SE = Node5

Node2

v0 = d
v1 = a
v2 = A
v3 = c
v4 = D
v5 = h 
v6 = E
v7 = e
v8 = B
NW = null
NE = null
SW = null
SE = null

Node3

v0 = f
v1 = b
v2 = B
v3 = e
v4 = E
v5 = i 
v6 = F
v7 = g
v8 = C
NW = null
NE = null
SW = null
SE = null

Node4

v0 = k
v1 = h
v2 = D
v3 = j
v4 = G
v5 = o 
v6 = H
v7 = l
v8 = E
NW = null
NE = null
SW = null
SE = null

Node5

v0 = m
v1 = i
v2 = E
v3 = l
v4 = H
v5 = p 
v6 = I
v7 = n
v8 = F
NW = null
NE = null
SW = null
SE = null

QuadTree

Step 1) Unlink 16 IndexNodes

Node 1

Node 2 Node 3

Node 4 Node 5

Node 1

9



 
 

Transform and add that new IndexNode’s data to the vertex list.  If this node has 
a bottom link, take it; otherwise follow the IndexNode’s left link.  Continue this 
operation until all directly accessible IndexNodes for this TreeNode have been 
traversed.  This may result in more than nine vertices being stored, since a 
neighbor may have refined. 
 

 
 
Referring to Figure 9, after applying the display process explained in Figure 8 to 
the data structure depicted in Figure 4, the resultant triangle fans would be 
generated.  Each individual fan is shaded with a different pattern.  Since there 
are five TreeNodes that do not have children, 5 triangle fans are created.  The 
triangle fans avoid T-junctions by the fact that the IndexNodes are shared and 
thus neighbors that require additional levels of refinement are effectively inserting 
IndexNodes for multiple TreeNodes without the need for direct knowledge of their 
siblings. The final step is to send the triangle fan list generated as efficiently as 
possible to your particular graphics hardware. 
 
 

 

 
 

Figure 8  Display Process Flow Chart 
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The display process can be easily modified eliminating the need to transform or 
to store the entire transformed vertex data into other more effective data 
structures for particular hardware or graphics library. 
 
This algorithm could easily be modified to use non-uniformly gridded data, as 
through the use of currently published works that perform a gridding operation.  
Non quad tree representations could also be used, allowing for different 
refinement processes.  Non-view dependent criteria can also be used. 
 

3 Conclusions 
 
Timely presentation of massive terrain datasets is critical in a Command and 
Control environment with a delicate balance between speed and accuracy. It is 
extremely important to preserve the raw data for precise mission planning, but 

Figure 9  Applying the display process to the data structure 
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just as important is fast access to the information to make timely decisions. We 
have developed a novel approach for displaying massive datasets without 
sacrificing the raw data format and accuracy for speed.  
 
This implementation addresses the need to display high resolution terrain data 
(e.g. DTED) from global to high-resolution scales. This approach addresses 
specifically the methodology for loading and managing gridded datasets.  Since 
even the best modern hardware cannot use brute force methods for loading or 
displaying such voluminous data at the global level, the only way to achieve the 
visual quality and the interactive speed desired is to use real-time algorithms that 
vary the quality of the displayed content.   
 
The algorithm described here provides a novel approach to visualization of 
unmodified source data where data precision is important but varies along the 
surface.  This technique isn’t constrained to geospatial visualization and can be 
used to display other models or mathematical functions. 
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